If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+26x-731=0
a = 1; b = 26; c = -731;
Δ = b2-4ac
Δ = 262-4·1·(-731)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-60}{2*1}=\frac{-86}{2} =-43 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+60}{2*1}=\frac{34}{2} =17 $
| 4y+1=2y+ | | 5(7-4x)=-15 | | 4p^2-30-10=0 | | 4(x+3)=-2(x+9) | | 9(x-9)(x-1)=119 | | 1.5=-16x^2+136 | | 17-5/2x=2 | | -3+m9 = 10 | | 121-57=k+80 | | y^2+2y+37=0 | | 11=3t+35 | | 4a2=196 | | 4^5+4^7=2^x | | 9((x-4)(x-4))-25=119 | | -14n+13=-13n-7 | | x^2-32x+160=0 | | -14+4(x-4)+6x=3x-16 | | -30x+270-x+9=0 | | 7(3/5x-14)=28 | | 20=v− | | 12x+30=12 | | 9x^2+30x+35=10 | | X^2-8=4x-12 | | 12y+20=17y | | 20=v−20=v− | | V=r2 | | 36-2x=-x=2 | | 3(x-6)-2(x+4)=-20 | | 6(2x+5)=12 | | 2/3x+1/2=2/5-1/3x+2/5 | | A=r2 | | -x^2+32x-160=0 |